Kinetics of the Dienone-Phenol Rearrangement and Basicity Studies of Some Cyclohexa-2,5-dienones

By Michael J. Hughes and Anthony J. Waring,* Chemistry Department, University of Birmingham, P.O. Box 363, Birmingham B15 2TT

Abstract

The basicities have been measured of 5,6,7.8-tetrahydro-4a-methyInaphthalen-2(4aH)-one, 5,6,7,8-tetrahydro-4a,8-dimethylnaphthalen-2 (4aH)-one, androsta-1,4-diene-3.17-dione, 2,4,4-trimethylcyclohexa-2,5-dienone. and 2,4,4,6-tetramethylcyclohexa-2.5-dienone. The kinetics and products of the dienone-phenol rearrangements of these dienones in aqueous sulphuric and perchloric acids at $25^{\circ} \mathrm{C}$ have been studied: limited kinetic studies have also been made in aqueous sulphuric acid at $40^{\circ} \mathrm{C}$. The effects of substitution pattern on the basicities and rates of rearrangement are discussed.

The dienone-phenol rearrangement has found much application in the steroid series, and numerous studies have been made of the rearrangements of analogous bicyclic dienones (for reviews see refs. 1-4). Despite the many mechanistic discussions which have been published, we know of no studies of the kinetics of these reactions. We now report basicity measurements of the representative compounds, $5,6,7,8$-tetrahydro-4a-methylnaphthalen-2 $(4 a H)$-one (1), its $4 \mathrm{a}, 8$-dimethyl analogue (2), and androsta-1,4-diene-3,17-dione (3), together with a study of the kinetics of their rearrangements in aqueous sulphuric and perchloric acids, and detailed product studies for (1) and (2). The products from (2) show that an unexpected phenol-phenol rearrangement takes place. We also report similar studies of the monocyclic compounds 2,4,4-trimethyland 2,4,4,6-tetramethyl-cyclohexa-2,5-dienone [(4) and (5)], and compare the results with those obtained for other monocyclic analogues. ${ }^{5,6}$

EXPERIMENTAL
5,6,7,8-Tetralhydro-4a-methylnaphthalen-2(4aH)-one (1).This was prepared by dehydrogenation with selenium dioxide ${ }^{7}$ of $3,4,5,6,7,8$-hexahydro-4a-methylnapththalen$2(4 \mathrm{a} H)$-one, ${ }^{8}$ and purified by chromatography on alumina
${ }^{1}$ N. L. Wendler, in ' Molecular Rearrangements,' ed. P. de Mayo, Interscience, New York, 1964.
${ }^{2}$ A. J. Waring, Adv. Alicyclic Chem., 1966, 1, 129.
${ }^{3}$ A. J. Waring, Österr. Chem.-Ztg., 1967, 68, 232.
${ }^{4}$ B. Miller, in ' Mechanisms of Molecular Migration,' ed. B. S. Thyagarajan, Interscience, New York, 1968, p. 247.
${ }^{5}$ K. L. Cook and A. J. Waring, J.C.S. Perkin II, 1973, 84.
${ }^{6}$ K. L. Cook and A. J. Waring, J.C.S. Perkin II, 1973, 88.
${ }^{7}$ P. J. Kropp, J. Amer. Chem. Soc., 1964, 86, 4053, and references given in refs. 2 and 3.
followed by distillation (b.p. $102-104^{\circ}$ at 0.6 mmHg ; lit., ${ }^{123-124^{\circ}}$ at 3 mmHg) to $>99.9 \%$ purity (estimated by g.l.c.) (Found: C, $81.5 ; \mathrm{H}, 8.8$. Calc. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}$: C, $81.5 ; \mathrm{H}, 8.7 \%$), $\nu_{\text {max. }}$ (film) 1664,1626 , and $1605 \mathrm{~cm}^{-1}$, $\lambda_{\text {max. }}\left(\mathrm{H}_{2} \mathrm{O}\right) 246 \mathrm{~nm}(\log \varepsilon 4 \cdot 187)$ [lit., ${ }^{9} 240 \mathrm{~nm}(\log \varepsilon 4 \cdot 1)$ in EtOH], $\tau\left(\mathrm{CCl}_{4}\right) 4.05(\mathrm{H}-1), 3.94(\mathrm{H}-3), 3.37(\mathrm{H}-4)$, and $8.74(\mathrm{Me}-4), J_{1.3} 1.7, J_{3.4} 10 \mathrm{~Hz}$; $\tau\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 3.87(\mathrm{H}-1)$, $3.86(\mathrm{H}-3), 3 \cdot 77(\mathrm{H}-4)$, and $9 \cdot 23(\mathrm{Me}-4), J_{1.3} 1 \cdot 6, J_{3.4} 9.9 \mathrm{~Hz}$.
5,6,7,8-Tetrahydro-trans-4a, 8-dimethylnaphthalen-2(4aH)one (2).-Prepared according to Bloom, ${ }^{10}$ this had m.p. $58.5-59.5^{\circ}$ [from petroleum (b.p. 40-60 ${ }^{\circ}$)] (lit., ${ }^{10} 59.5-$ 60.5°) (Found: C, $81.8 ; \mathrm{H}, 8.9$. Calc. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}$: C, $81.8 ; \mathrm{H}, 9.1 \%$), $\nu_{\max }$ (Nujol) 1656,1618 , and $1597 \mathrm{~cm}^{-1}$ (lit., ${ }^{10} 1658$ and $1621 \mathrm{~cm}^{-1}$), $\lambda_{\text {max }}\left(\mathrm{H}_{2} \mathrm{O}\right) 246 \mathrm{~nm}(\log \varepsilon 4 \cdot 176)$, $\lambda_{\text {max. }}$ (EtOH) $241.5 \mathrm{~nm}\left(\log \varepsilon 4.146\right.$) [lit., ${ }^{10} 243.5 \mathrm{~nm}(\log \varepsilon$ $4.07)$], $\tau\left(\mathrm{CCl}_{4}\right) 4.05(\mathrm{H}-1), 3.93(\mathrm{H}-3), 3.37(\mathrm{H}-4), 8.74$ (Me-4a), and $8.84(\mathrm{~d}, J 6.4 \mathrm{~Hz}, \mathrm{Me}-8), J_{1.3} 1 \cdot 6, J_{3,4} 10 \mathrm{~Hz}$; $\tau\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 3.79$ and $3.80(\mathrm{H}-1,-3$, and -4$), 9 \cdot 21(\mathrm{Me}-4 \mathrm{a})$, and 9.21 (d, J $6.3 \mathrm{~Hz}, \mathrm{Me}-8$).
Androsta-1,4-diene-3,17-dione (3).-This was commercial material, recrystallised to m.p. $140-141 \cdot 5^{\circ}$ from hexaneacetone at $-80^{\circ} \mathrm{C}$ (lit., ${ }^{11} \mathrm{~m} . \mathrm{p} .140-141^{\circ}$; lit., ${ }^{12} 140-$ $141 \cdot 5^{\circ}$); $\lambda_{\text {max. }}\left(\mathrm{H}_{2} \mathrm{O}\right) 239 \mathrm{~nm}(\log \varepsilon 4 \cdot 210)$ [lit., ${ }^{12} 242 \cdot 5 \mathrm{~nm}$ ($\log \varepsilon 4 \cdot 18$) in MeOH ; lit., ${ }^{13} 244 \mathrm{~nm}(\log \varepsilon 4 \cdot 23)$ in EtOH$]$, $\tau\left(\mathrm{CCl}_{4}\right) 3.06(\mathrm{H}-1), 3.91(\mathrm{H}-2)$, and $4.06(\mathrm{H}-4), J_{2,4} 1.7$, $J_{1.2} 10 \cdot 2 \mathrm{~Hz}$.
2,4,4-Trimethylcyclohexa-2,5-dienone (4).-Prepared by K. L. Cook, ${ }^{14}$ this was further purified by chromatography on alumina and molecular distillation to $>99.8 \%$ purity (checked by g.l.c.) (Found: C, 79.1; H, 8.8. Calc. for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}: \mathrm{C}, 79.4 ; \mathrm{H}, 8.9 \%$), $\lambda_{\text {max. }}\left(\mathrm{H}_{2} \mathrm{O}\right) 242.3 \mathrm{~nm}(\log \varepsilon$ $4 \cdot 190$). Other spectroscopic data were as published. ${ }^{14}$
2-Methylpent-1-en-3-one (Ethyl Isopropenyl Ketone).This was prepared from diethyl ketone and formaldehyde by the general method given in ref. 14, and had b.p. 109$111^{\circ}$ (lit., ${ }^{15} 117-119^{\circ}$).

2,4,4,6-Tetramethylcyclohex-2-enone.-A mixture of 2 -methylpent-1-en-3-one (24 ml), isobutyraldehyde (24 ml), water (24 ml), and methanol (30 ml) was added with stirring to potassium hydroxide ($1 \cdot 1 \mathrm{~g}$) in methanol (7 ml) at $45^{\circ} \mathrm{C}$, during 1 h . The mixture was heated at $70-72{ }^{\circ} \mathrm{C}$ for 2 h , then water (5 ml) was added to cause separation of a pink oily layer which was extracted with ether (NaCl added).
${ }^{8}$ J. A. Marshall and W. I. Fanta, J. Org. Chem., 1964, 29, 2501.
${ }^{9}$ R. B. Woodward and T. Singh, J. Amer. Chem. Soc., 1950, $72,494$.
${ }^{10}$ S. M. Bloom, J. Amer. Chem. Soc., 1958, 80, 6280.
${ }_{11}{ }^{11}$ C. Djerassi and C. R. Scholz, J. Org. Chem., 1948, 13, 697.
${ }^{12}$ R. M. Dodson, A. H. Goldkamp, and R. D. Muir, J. Amer. Chem. Soc., 1960, 82, 4026.
${ }^{13}$ L. Dorfman, Chem. Rev., 1953, 53, 47.
${ }^{14}$ K. L. Cook and A. J. Waring, J.C.S. Perkin I, 1973, 529.
${ }^{15}$ J. Colonge and L. Cumet, Bull. Soc. chim. France, 1947, 838.

The extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Distillation gave fractions (6.0 g), b.p. $93-98{ }^{\circ} \mathrm{C}$ at 12 mmHg , which contained the desired cyclohexenone as major product. A pure sample, from chromatography on alumina, had $\nu_{\text {max. }}$ (film) 1658 and $1644 \mathrm{~cm}^{-1}$, $\lambda_{\text {max }}$ (EtOH) 236.5 nm $(\log \varepsilon 4.059), \tau\left(\mathrm{CCl}_{4}\right) 3.77(\mathrm{~m}, \mathrm{H}-3), 7.56(\mathrm{~m}, \mathrm{H}-5$ and -6$)$, $8.32,8.90$, and 8.96 (Me-2, -4 , and -4 , respectively), and $8.87(\mathrm{~d}, J 6 \mathrm{~Hz}, \mathrm{Me}-6) ; \tau\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 4.06(\mathrm{H}-3), 8.22,9 \cdot 17$, and 9.23 (Me-2, -4, and -4, respectively), and 8.88 (d, J. 6 Hz , $\mathrm{Me}-6$) (Found: $\mathrm{C}, 79 \cdot 0 ; \mathrm{H}, 10 \cdot 4 . \quad \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$ requires C , 78.8 ; H, 10.6%).

2,4,4,6-Tetramethylcyclohexa-2,5-dienone (5).-The foregoing tetramethylcyclohexenone (6.0 g ; crude) was heated under reflux in dry benzene (250 ml) with 2,3 -di-chloro-5,6-dicyano-1,4-benzoquinone (6.7 g) and a trace of toluene- p-sulphonic acid, under nitrogen for 2 days.* Filtration of the solution through Hyflo Supercel, and washing of the filter-bed with ether (600 ml), followed by drying (MgSO_{4}) and careful evaporation at $25^{\circ} \mathrm{C}$ (vacuum) gave a brown residue. This was extracted with pentane $(3 \times 300 \mathrm{ml})$; the solution was dried and evaporated at 0°, and the residue was purified by chromatography on alumina (Activity I; 50 g) [eluant petroleum (b.p. 40$60^{\circ}$) and mixtures with ether]. The dienone (98% purity) was further purified by crystallisation from n-hexane $\left(-80^{\circ} \mathrm{C}\right)$, then molecular distillation to give material (900 mg) of $>99.5 \%$ purity, m.p. $43-45^{\circ}$ (Found: C, $80 \cdot 1 ; \mathrm{H}, 9.3 . \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}$ requires $\mathrm{C}, 80 \cdot 0 ; \mathrm{H}, 9.4 \%$), $\mathrm{v}_{\text {max }}$ (melted film) $1673,1667,1643,1633$, and $1605 \mathrm{~cm}^{-1}$, $\lambda_{\text {max }}$ $\left(\mathrm{H}_{2} \mathrm{O}\right) 248.5 \mathrm{~nm}(\log \varepsilon 4 \cdot 165)$, $\lambda_{\max }(\mathrm{EtOH}) 243 \mathrm{~nm}(\log \varepsilon$ $4 \cdot 127$), $\tau\left(\mathrm{CCl}_{4}\right) 3.54$ ($\mathrm{H}-3$ and -5), $8 \cdot 18$ ($\mathrm{Me}-2$ and -6), and $8.83(\mathrm{Me}-4) ; \tau\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 3.88(\mathrm{H}-3$ and -5$), 8.08(\mathrm{Me}-2$ and -6$)$, and 9.21 ($\mathrm{Me}-4$); τ (cation in $78 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ at $-5{ }^{\circ} \mathrm{C}$) 2.06 ($\mathrm{H}-3$ and -5), 7.81 ($\mathrm{Me}-2$ and -6), and 8.61 (Me-4).
Basicity and Kinetic Measurements.-The studies were performed on solutions in aqueous sulphuric or perchloric acid, by the u.v. and acidity function methods, as before. ${ }^{5,6}$ Values of H_{0} in sulphuric acid at 25° were taken from refs. $16 a$ and b, values of H_{A} from refs. $17 a$ and b, values of H_{0} at 40° from ref. 18, and values of H_{0} in perchloric acid at 25° from ref. 19. U.v. spectra were measured with a Cary 14 or Unicam SP 1800 spectrometer, with cell blocks thermostatted to within $\pm 0 \cdot 1^{\circ} \mathrm{C}$. Rate constants were calculated by Guggenheim's ${ }^{20}$ or Swinbourne's ${ }^{21}$ method, and plots of $\log \left(\mathrm{OD}-\mathrm{OD}_{\infty}\right)$ against time, over $1-3$ half lives; least squares parameters were calculated with a Hewlett-Packard 9100A calculator. For compound (3), which rearranges very slowly and develops slight colour after ca. 5 days, an iterative computer program was used to calculate the OD_{∞} values and optimise the linearity of the logarithmic plot: use of the same program on data for other compounds gave results agreeing well with those obtained directly. We thank Mr. J. W. Pilkington for this program. Beer's Law checks for the dienones

[^0]in water gave excellent constancy of ε values over a tenfold range of concentration. I.r. spectra were measured with a Unicam SP 200G grating instrument, and n.m.r. spectra with a Perkin-Elmer 100 MHz instrument (SiMe_{4} as internal standard).
Preparative Rearrangements and Determination of Product Ratios.-Product ratios were measured by g.l.c. with a Pye 104 instrument fitted with a flame ionisation detector; pure authentic samples or mixtures of known composition were used for quantitative calibrations.
Rearrangements of 5,6,7,8-Tetrahydro-4a-methylnaphth-alen-2(4aH)-one (1).-The authentic phenol products (7) and (8) were made by rearrangement of (1) with acetic

(7)

(8)

(9)

(10)
anhydride-sulphuric acid at room temperature, during 5 h , followed by hydrolysis of the mixture of acetates by ethanolic hydrochloric acid ${ }^{9}$ [this gave (7) and (8) in an 18:82 ratio (g.l.c. on E30 at 150°)]. \dagger Rearrangement in 50% sulphuric acid at 100° for $30 \mathrm{~min}{ }^{24}$ gave (7) and (8) in an $85: 15$ ratio. \ddagger
Accurately weighed samples of the dienone (1) (ca. 5 mg) were each kept in 5.0 ml of sulphuric acid (acid strengths $78.8,82 \cdot 1$, and $84.2 \% ; H_{0}-7 \cdot 17,-7.69$, and -8.01 , respectively) for 72 h at $25^{\circ} \mathrm{C}$. Water (50 ml) was added to each sample, and each was extracted with ether ($3 \times$ $10 \mathrm{ml})$. The dried extracts were carefully evaporated, and the residues were dissolved in hexane $(2.0 \mathrm{ml})$ and examined by g.l.c. The ratios of $5,6,7,8$-tetrahydro-4-methyl-2-naphthol (7) to the 1 -naphthol (8) were, respectively, $3.50 \pm 0.06,3.80 \pm 0.07$, and 3.55 ± 0.12, with average 3.62 ± 0.13; unchanged dienone remained in each case. The combined products (after evaporation) were dissolved in 70% sulphuric acid; the solution was heated at $100^{\circ} \mathrm{C}$ for 2 h and worked up as before, and the products were re-examined: the ratio of phenols was then $3 \cdot 60 \pm 0.12$. It was therefore assumed that the previous result was achieved under kinetic control, which was not disturbed by longer reaction times. The total estimated yields of phenols (not allowing for losses in work-up) were $62,55,45$, and 35% (all $\pm 4 \%$), consistent with overall losses being due to sulphonation. Similar studies in perchloric acid of strengths $65 \cdot 3,67 \cdot 4$, and 70.7% (H_{0} $-6.50,-7.04$, and -7.95), reacting for 24 h at 25°, gave ratios of the 4 -methyl-2-tetralol (7) to the 4 -methyl1 -tetralol (8) of $5 \cdot 1 \pm 0 \cdot 1, \quad 5 \cdot 4 \pm 0 \cdot 2$, and $4 \cdot 8 \pm 0 \cdot 2$,

[^1]with average $5 \cdot 2 \pm 0.3$ and estimated total recoveries of 82,77 , and 69% (all $\pm 5 \%$).

Rearrangements of 5,6,7,8-Tetrahydro-4a,8-dimethylnaph-thalen-2(4aH)-one (2). -The authentic rearrangement products (9) and (10) were made by treating (2) in acetic anhydride-sulphuric acid for 6 or 8 h at room temperature, ${ }^{10}$ followed by hydrolysis with ethanolic hydrochloric acid, ${ }^{9}$ and by rearrangement in 50% sulphuric acid at $100{ }^{\circ} \mathrm{C}$ for 30 min [giving (10) and (9) in a $2.2 \pm 0.2: 1$ ratio, measured by g.l.c. on an NGS column at 190°, or on E30 at 150°] (lit., ${ }^{25} 2 \cdot 2: 1$ from isolation experiments), and in concentrated hydrochloric acid at $100{ }^{\circ} \mathrm{C}$ for 45 min $[(10):(9), 1 \cdot 7 \pm 0 \cdot 2: 1]$ (lit., ${ }^{25} \mathbf{l} \cdot 9: 1$ from isolation experiments). Separation by column chromatography on silica gave the major component (10), m.p. 93.5- 94.5° [from petroleum (b.p. $40-60^{\circ}$)] (lit., ${ }^{10} \mathrm{~m} . \mathrm{p} .93-94 \cdot 5^{\circ}$; lit., ${ }^{25} 95-96^{\circ}$) (Found: C, $81 \cdot 8 ; \mathrm{H}, 9 \cdot 2$. Calc. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}$: C, $81.8 ; \mathrm{H}, 9 \cdot 1 \%)$, г $\left(\mathrm{CCl}_{4}\right) 3.27(\mathrm{H}-3), 3.64(\mathrm{H}-2), 7.93$ (Me-4), and $8.80(\mathrm{~d}, J 7.0 \mathrm{~Hz}, \mathrm{Me}-8), J_{2.3} 8 \mathrm{~Hz}$. The minor component (9), m.p. 94.8-95.2 ${ }^{\circ}$ (from hexane) (lit., ${ }^{25} 95.5-96.0^{\circ}$), was slightly coloured and although pure by g.l.c. was not microanalysed; it had $\tau\left(\mathrm{CCl}_{4}\right)$ 3.58 (H-1 and -3), 7.90 (Me-4), and $8.81(\mathrm{~d}, J 7 \cdot 1 \mathrm{~Hz}, \mathrm{Me}-8)$ [lit. ${ }^{25} \tau\left(\mathrm{CDCl}_{3}\right) 3 \cdot 42(\mathrm{H}-1$ and -3$), 7 \cdot 82$, and $8 \cdot 76$]. Product studies were conducted as before, using sulphuric acid of strengths $\mathbf{7 8 \cdot 8}, 82 \cdot 1$, and $84 \cdot 2 \%$ at $25^{\circ}, *$ but samples were taken at reaction times of $4,7,16,24,31,41,48$, and 56 h . In each case, the ratio of (10) to (9) started below $1 \cdot 0$, rose to above 1.0 at $7-16 \mathrm{~h}$, increased to $1.31,1.12$, and 1.08 for the three acid strengths, then decreased to $1 \cdot 23,0.82$, and 0.57 , respectively. Extrapolation to zero time gave an initial ratio of (10) to (9) of 0.70 ± 0.09 in each case. To determine the reason for changing product ratios, samples of the pure phenols in $\mathbf{8 2} \cdot 1 \%$ sulphuric acid were leept at room temperature for 7 days. The usual work-up and g.l.c. showed that the 1 -tetralol (10) was not converted into the 2 -tetralol (9), although there was overall loss of material (presumably due to sulphonation), but that the 2 -tetralol (9) was ca. 50% converted into (10), again with loss of material. In 50% sulphuric acid the 2 -tetralol (9) was ca. 10% converted into (10) in 24 h at room temperature, and $c a .30 \%$ converted in 4 h at 100° : separation of these combined product mixtures by column chromatography on silica gave 22% of a compound whose spectroscopic properties agree with those of (10); the n.m.r. spectrum was slightly different $\left[\tau\left(\mathrm{CCl}_{4}\right) 3 \cdot 32(\mathrm{H}-3)\right.$, 3.69 (H-2), 7.92 (Me-4), and 8.79 (d, $J 7.2 \mathrm{~Hz}, \mathrm{Me}-8$), $J_{2.3}$ $7-8 \mathrm{~Hz}]$ from that of pure (10), but this may represent a concentration effect, or slight instrument calibration error.

Studies of the rearrangement of the dienone (2) in 65.3 and $\mathbf{7 0 . 7} \%$ perchloric acid at 25° gave ratios of 1 -tetralol (10) to 2 -tetralol (9) of 2.75 ± 0.15 in both cases after 3 h reaction, and 6.6 ± 0.2 in both cases after 24 h . Loss of phenolic material is less serious than in sulphuric acid (recovery $\mathbf{7 6 \%}$ from $65 \cdot \mathbf{2} \%$ acid, and 55% from 70.6% acid, after 24 h). The variation of product ratio with reaction time in the 70.6% acid ($H_{0}-7.95$) was studied

* Under these conditions the half-lives of the dienone are 33.8, 24.5 , and 21.3 h , respectively. Recoveries of both phenols in the work-up procedure were 80%.
\dagger The half-life of the dienone under these conditions is $c a .6 \cdot 5 \mathrm{~h}$.
\ddagger Under these conditions the dienone has half-lives $c a .1 .85$ and 0.57 h , respectively. K. L. Cook (unpublished work) has shown that reaction for 24 h in $\mathbf{7 0 . 7} \%$ sulphuric acid gave a product ratio of $5 \cdot 3 \pm \mathbf{0 . 2}: 1$.
(times of $1,2,4,6,10,15,20$, and 30 h$) ; \dagger$ the ratio $(10):(9)$ started at ca. 1.65 (at 1 h), rising to 6.75 (at 20 h), then falling slightly. The estimated initial ratio was $1 \cdot 10 \pm$ $0 \cdot 15$; again the results are consistent with (9) being converted into (10).

Rearrangements of Androsta-1,4-diene-3,17-dione.-Rearrangement of (3) in 83% sulphuric acid, during 10 days at 25°, and separation by chromatography on silica, gave two products in essentially equal yields. The same products, obtained in the ratio ca. $4: 1$, were given by rearrangement in concentrated hydrochloric acid: they have been shown ${ }^{24}$ to have structures analogous to (9) and (10), respectively (lit., ${ }^{24}$ ratio ca. 5•5:1).

Rearvangements of $2,4,4$-Trimethylcyclohexa-2,5-dienone (4).-Authentic samples of 2,3,4- and 2,4,5-trimethylphenol were available from other work. Samples of the dienone (4) were treated w.th sulphuric acid (strengths $33 \cdot 8,49 \cdot 4$, and $57.7 \% ; H_{0}-1.98,-3 \cdot 32$, and $-4 \cdot 20$) at 25° for various times, and the products were worked up and examined by calibrated g.l.c. (E30 column at 130°) as before. The initial ratio of $2,4,5$ - to $2,3,4$-trimethylphenol in each case was $2 \cdot 3 \pm 0 \cdot 13: 1$, with total mass balance $93 \pm 5 \%$. After reaction for 24 h in 49.4% acid, \ddagger or 5 h in $57 \cdot 7 \%, \dagger$ the ratio had risen to $2 \cdot 6 \pm 0 \cdot 2$, with mass balances 97 ± 5 and $88 \pm 4 \%$, respectively. An equimolar mixture of the two phenols was treated similarly in 57.7 and 70.0% sulphuric acid for 30 h at $25{ }^{\circ} \mathrm{C}$: the ratio changed slightly in the former case, and was increased to $c a .1 .5$ in the latter. These changes in ratio were shown not to be caused by isomerisation of $2,3,4$ - to $2,4,5$-trimethylphenol, and are assumed to reflect faster loss by sulphonation of the former isomer. Rearrangements of the dienone (4) in $36 \cdot 0,47 \cdot 0$, and $52 \cdot 2 \%$ perchloric acid ($H_{0}-2 \cdot 05,-3 \cdot 10$, and $-3 \cdot 80$) gave an initial ratio of $2,4,5$ - to $2,3,4$-trimethylphenol of $3 \cdot 43 \pm$ $\pm 0.05: 1$; this rose slowly to 3.9 ± 0.4, with the total mass balance remaining at 94 ± 5 to $87 \pm 4 \%$.

Rearrangements of 2,4,4,6-Tetramethylcyclohexa-2,5-dienone (5).-Authentic samples of 2,3,4,6- and other tetramethylphenols were available from other work. The dienone (5) was kept in 58% sulphuric acid for 6 h at $25^{\circ} \mathrm{C}$. Work-up was performed as before, and g.l.c. on a QF1 column at 180° showed complete conversion into a single compound (76%), identical (retention times and i.r. spectrum) with 2,3,4,6-tetramethylphenol. Similar rearrangements in perchloric acid (46.0 and $54.8 \% ; H_{0}$ -2.97 and -4.22) for periods of $10-360 \mathrm{~min}$ gave only the same phenol, with total mass balance falling from an initial value of 92 ± 4 to $81 \pm 4 \%$.

Test of Intramolecularity of Rearrangement: Mixed Rearvangement of 2,4,4,6-Tetramethyl- and 4-Ethyl-4-methyl-cyclohexa-2,5-dienones.—The 4-ethyl-4-methyl dienone ${ }^{\mathbf{2 6}}$ was supplied by Mr. J. W. Pilkington. The two dienones were mixed and kept in $53 \cdot 1 \%$ sulphuric acid ($H_{0}-3 \cdot 59$) at $25{ }^{\circ} \mathrm{C}$: their rearrangement rates are in the ratio $c a$. $1: 4$. Samples withdrawn after 1.0 and 4.0 h were worked up and analysed on an E30 column at 150°. The only product peaks had retention times identical with the products of the separate rearrangements; 0.5% of other products would have been detectable.
N.m.r. Spectrum of the Cation of 2,4,4,6-Tetramethylcyclo-hexa-2,5-dienone.-The cation in 78.4% sulphuric acid

[^2]at $-5{ }^{\circ} \mathrm{C}\left(\mathrm{Me}_{4} \mathrm{~N}^{+}\right.$internal standard) has $=7.81(\mathrm{Me-2}$ and -6), 8.61 (Me-4), and 2.06 (H-3 and -5). These values are close to those reported ${ }^{27}$ for numerous analogous cations of type $\langle\mathbf{1 1})$. Because the cation rearranges rapidly during the n.m.r. measurement we cannot say that (11) is the only cation formed, although there is no evidence of significant peaks due to other possible cations.

discussion

Basicity Measurements.-Knowledge of the basicity of the dienones is necessary for interpreting the kinetics of their rearrangements, in that one needs to know both the observed rate of rearrangement in a given acid [given by $k_{\text {obs. }}$ in equation (1)] and the rate of rearrangement of the chemically reactive dienone

$$
\underset{[\mathrm{B}]}{\underset{K_{\mathrm{A}}}{\text { Dienone }} \stackrel{\mathrm{H}^{+} \text {fast }}{\left[\mathrm{BH}^{+}\right]} \underset{\text { siow }}{\text { Cation }} \stackrel{k}{\text { and }} \text { Products }}
$$

$\mathrm{d}[$ stoicheiometric dienone $] / \mathrm{d} t=-k_{\text {obs }}$.
[stoicheiometric dienone]

$$
\begin{align*}
& \mathrm{d}\left[\mathrm{BH}^{+}\right] / \mathrm{d} t=-k_{\mathrm{obs} .}\left[\mathrm{BH}^{+}\right] \quad \mathrm{d}[\mathrm{~B}] / \mathrm{d} t=-k_{\mathrm{obs} .}[\mathrm{B}] \\
& \text { Rate }= \\
& \quad-\mathrm{d}\left[\mathrm{~B}+\mathrm{BH}^{+}\right] / \mathrm{d} t=\mathrm{d}[\text { Product }] / \mathrm{d} t=k_{\mathbf{1}}\left[\mathrm{BH}^{+}\right]
\end{aligned} \begin{aligned}
& k_{\mathbf{1}}=k_{\mathrm{obs} .}\left(\mathbf{l}+[\mathrm{B}] /\left[\mathrm{BH}^{+}\right]\right) \tag{2}\\
& \quad \begin{array}{r}
\log I=m_{\mathrm{A}}\left[\left(\mathrm{H}_{\mathrm{A}}\right)_{\frac{1}{2}}-\mathrm{H}_{\mathrm{A}}\right] \\
\quad=m_{0}\left[\left(\mathrm{H}_{0}\right)_{\frac{1}{2}}-\mathrm{H}_{0}\right], \text { where } I=\left[\mathrm{BH}^{+}\right] /[\mathrm{B}] \\
\quad=\left(\varepsilon-\varepsilon_{\mathrm{B}}\right) /\left(\varepsilon_{\mathrm{BH}^{+}}-\varepsilon\right)
\end{array} \tag{3}
\end{align*}
$$

cation * [given by k_{J} in equations (2) and (3)]. The proportion of the stoicheiometric dienone which exists
logue (2) seems to follow H_{0}, with $\mathrm{p} K-1.95 \pm 0.12$: the steroid (3) falls between H_{0} and H_{A} behaviour, with a ' corrected ' $\mathrm{p} K$ of $-2 \cdot 1 \pm 0 \cdot 2$. Within experimental error these three $\mathrm{p} K$ values are approximately equal, and close to those of the analogously substituted 3,4,4-trimethyl- and 3-ethyl-4,4-dimethylcyclohexa-2,5dienones studied earlier. ${ }^{5}$ The variation of acidity function behaviour between H_{Δ} and H_{0} has been noted

(11).
before, ${ }^{5}$ and presumably results from differing solvation properties of the various cations relative to the dienones. The 2,4,4-trimethyl dienone (4) also falls between H_{A} and H_{0} behaviour, with a 'corrected' $\mathrm{p} K$ value of $-2 \cdot 7 \pm 0 \cdot 2$; the 2,4,4,6-tetramethyl dienone appears to follow H_{0} closely, with $\mathrm{p} K-4 \cdot 2 \pm 0 \cdot 1$. Irrespective of the estimates of thermodynamic $\mathrm{p} K$ values it would be valuable to be able to predict the concentration of acid which is required to half-protonate each dienone. We have shown previously ${ }^{5}$ that published additive substituent effects on the $\mathrm{p} K$ values of a number of cyclohex-2-enones, ${ }^{28}$ which are also their $\left(H_{\mathrm{A}}\right)_{\frac{1}{2}}$ values, ${ }^{28}$ can also be applied to some alkylcyclo-hexa-2,5-dienones. The $\left(H_{\mathrm{A}}\right)_{\frac{1}{2}}$ predictions for the dienones (1)-(5), derived as previously ${ }^{5}$ are compared with the observed values in Table 2. The agreement

Table 1
Basicity measurements

mpd	Wavelengths ${ }^{\text {a }}$		$m_{\text {A }}{ }^{\text {e }}$		$m_{0}{ }^{\text {c }}$	${ }_{6}$	$\mathrm{p} K{ }^{\text {g }}$	acids ${ }^{n}$
(1)	245,* 265, $305 \dagger$	-1.82 ± 0.07	1.14 ± 0.07	-2.14 ± 0.06	0.77 ± 0.04	$36 \cdot 2 \pm 1 \cdot 0$	-1.93 ± 0.10	2.1-51.3
(2)	245,* 265, $305 \dagger$	-1.68 ± 0.08	1.50 ± 0.20	-1.95 ± 0.12	1.02 ± 0.04	$33.5 \pm 1 \cdot 4$	-1.95 ± 0.12	20.1-47.5
(3)	250, 300 *	-1.92 ± 0.08	1.30 ± 0.05	-2.31 ± 0.18	0.82 ± 0.07	$38 \cdot 6 \pm 2 \cdot 0$	-2.1 ± 0.2	27.9-51.1
(4)	240,* 245,* 266	-2.45 ± 0.07	1.30 ± 0.08	-3.27 ± 0.12	0.69 ± 0.03	49.4 ${ }^{\text {土 }}$-1	-2.7 ± 0.2	34.6-59.2
(5)	250	-2.93 ± 0.05	$1 \cdot 86 \pm 0 \cdot 14$	-4.20 ± 0.07	1.01 ± 0.03	$57 \cdot 6 \pm 0 \cdot 8$	$-4 \cdot 2 \pm 0 \cdot 1$	45.5-63.8

${ }^{a}$ Wavelengths, in nm, used for the measurements. ${ }^{b}$ Half-protonation acidity on amide acidity function H_{A}, using scales of refs. 17. ${ }^{\circ}$ See equation (4). ${ }^{\circ}$ Half-protonation acidity on Hammett's acidity function H_{0}, using scales of refs. 16 at $25{ }^{\circ} \mathrm{C}$ and ref. 18 at $40{ }^{\circ} \mathrm{C}$. e See equation (5). f Half-protonation acidity; weight $\%$. Best estimates of thermodynamic pK values, based on the treatment detailed in ref. 5. h Equations (4) and (5) are obeyed with the tabulated parameters over this range of acidity; weight \%.

* Moderately strong medium effect at this wavelength. \dagger Strong medium effect.
in the cationic form is given by the pK (or $H_{\frac{1}{4}}$) and slope parameters (m) in equations (4) and (5). The appropriate parameters are given in Table l. The bicyclic dienone (l) follows the amide acidity function H_{A} much more closely than the Hammett H_{0} function, but does not fit it perfectly: the estimate of the thermodynamic $\mathrm{p} K(-1.93 \pm 0.10)$ is a 'corrected' value (see ref. 5 for the correction procedure). \dagger The ana-
* We have shown by n.m.r. that each of the dienones (1)-(4) and (6) gives an O-protonated cation (hydroxybenzenium ion) of type (11): ${ }^{27}$ for evidence on the cation of (5), see Experimental section.
\dagger By p K we mean the best estimate, assuming the discussion in ref. 5 to apply.
for (1), (3), and (4) is good, for (2) it is poorer, and for (5) it is bad. A different type of correlation of dienone basicity with structure is given in the Appendix, and the surprisingly low basicity of the $2,4,4,6$-tetramethyl dienone (5) is discussed there.

Kinetic Measurements.-Values of the observed firstorder rate constants for rearrangement ($k_{\text {obs. }}$) and the derived values of k_{1} are given in Tables $3-7$. We found previously ${ }^{6}$ that $\log k_{1}$ was linearly related to H_{0}
${ }^{27}$ K. L. Cook, M. J. Hughes, and A. J. Waring, J.C.S. Perkin II, 1972, 1506.
${ }_{28}$ R. I. Zalewski and G. E. Dunn, Canad. J. Chem., (a) 1969, 47, 2263; (b) 1970, 48, 2538.
and H_{Δ} [equations (6) and (7)] for a series of dienonephenol rearrangements. The same was found for all

Table 2
Predicted and observed values of $\left(H_{\Delta}\right)_{\frac{1}{2}}$

	Experimental		Calculated
Compd.	$\mathrm{p} K$	$\left(H_{\mathbf{A}}\right)_{ \pm}$	$\mathrm{p} K=\left(H_{\mathrm{A}}\right)_{\text {m }}$
(1) ${ }^{\text {a }}$	$-1.93 \pm 0 \cdot 10$	-1.82 ± 0.07	-2.04 ± 0.13
(2) ${ }^{\text {a }}$	-1.95 ± 0.12	-1.68 ± 0.08	-2.04 ± 0.13
(3) ${ }^{\text {a }}$	-2.1 ± 0.2	-1.92 ± 0.08	-2.04 ± 0.13
(4) ${ }^{6}$	-2.7 ± 0.2	-2.45 ± 0.07	-2.57 ± 0.16
$(5){ }^{\text {b }}$	$-4 \cdot 2 \pm 0 \cdot 1$	-2.93 ± 0.05	-2.30 ± 0.19

${ }^{a}$ Models used: ${ }^{28 a}$ 3,4,5,6,7,8-hexahydro-3-methylnaphtha-len-2 $(4 \mathrm{a} H)$-one, $\mathrm{p} K-2 \cdot 82 \pm 0 \cdot 03: 3,4,5,6,7,8$-hexahydro-1-methylnaphthalen- $2(4 \mathrm{a} H)$-one, $\mathrm{p} K-2 \cdot 47 \pm 0.03$, subtract 0.30 due to 1 -methyl group, giving -2.77 ± 0.03; mean -2.80 ± 0.05. Value from Table III of ref. $28 a,-2.82 \pm$ 0.05 . ${ }^{\boldsymbol{b}}$ Models used: :28a cyclohex-2-enone, $\mathrm{p} K-3.60 \pm 0.04$, and the other compounds discussed in ref. 28a. Value from Table III of ref. $28 a$ is -3.57 ± 0.05. The incremental correction for a 2 - or 6 -methyl group in the cyclohex- 2 -enone system is given as 0.30 in ref. $28 a$, and 0.25 in ref. $28 b$; we take 0.27 ± 0.03.

Table 3
Kinetics for compound (1) in aqueous sulphuric acid or perchloric acid (*) at $25^{\circ} \mathrm{C}$; u.v. at 265 nm

Acid, wt. \%	$-H_{\mathrm{A}}$	$-H_{0}$	$-\log k_{1} / \mathrm{s}^{-1 a}$
$74 \cdot 8$	$4 \cdot 13$	$6 \cdot 54$	$5 \cdot 72$
$77 \cdot 4$	$4 \cdot 37$	$6 \cdot 94$	$5 \cdot 67$
$80 \cdot 1$	$4 \cdot 57$	$7 \cdot 36$	$5 \cdot 60$
$82 \cdot 2$	$4 \cdot 75$	$7 \cdot 68$	$5 \cdot 57$
$85 \cdot 0$	$5 \cdot 01$	$8 \cdot 13$	$5 \cdot 53$
$65 \cdot 3^{*}$	$3 \cdot 97$	$6 \cdot 50$	$5 \cdot 13$
$71 \cdot 0^{*}$	$4 \cdot 60$	$8 \cdot 06$	$4 \cdot 89$
$a \log k_{1}=\log k_{\text {obs. }} ;$ standard deviations $0 \cdot 013-0 \cdot 023$.			

Table 4
Kinetics for compound (2) in aqueous sulphuric acid at $25{ }^{\circ} \mathrm{C}$, or at $40^{\circ}(\dagger)$, or in perchloric acid $\left(^{*}\right)$ at $25^{\circ} \mathrm{C}$; u.v. at 265 nm

Acid. wt. \%	$-H_{\text {A }}$	$-H_{0}$	$-\log k_{1} / \mathrm{s}^{\mathbf{- 1} a}$
$68 \cdot 1$	$3 \cdot 61$	$5 \cdot 52$	$5 \cdot 65$
71.5	$3 \cdot 87$	6.04	$5 \cdot 54$
$75 \cdot 2$	$4 \cdot 17$	$6 \cdot 60$	$5 \cdot 43$
77-0	$4 \cdot 33$	$6 \cdot 87$	$5 \cdot 29$
$78 \cdot 8$	$4 \cdot 45$	$7 \cdot 16$	$5 \cdot 25$
$80 \cdot 1$	$4 \cdot 57$	$7 \cdot 35$	$5 \cdot 21$
81.2	$4 \cdot 67$	$7 \cdot 54$	5•16
$82 \cdot 6$	$4 \cdot 78$	$7 \cdot 75$	$5 \cdot 10$
$67 \cdot 6 \dagger$		$5 \cdot 18$	$4 \cdot 78$
65-3 *	$3 \cdot 97$	6.50	$4 \cdot 94$
70.9 *	$4 \cdot 58$	$8 \cdot 04$	$4 \cdot 50$
$71 \cdot 0$ *	$4 \cdot 60$	8.06	$4 \cdot 49$

the rearrangements studied here, which follow equations (6) and (7) with the parameters given in Table 8. This

$$
\begin{align*}
& \log k_{1}=\mathrm{a} H_{\mathrm{A}}+\mathrm{b} \tag{6}\\
& \log k_{1}=\mathrm{c} H_{0}+\mathrm{d} \tag{7}\\
& \log k_{1}=\phi\left(H_{0}+\log \left[\mathrm{H}_{2} \mathrm{SO}_{4} \text { stoich. }\right]\right)+\log {k_{1}}^{0} \tag{8}
\end{align*}
$$

is particularly significant for the compounds (1)-(4). For some of the compounds studied before and for (5), which rearrange rapidly when extensively protonated,
many of the kinetic measurements have been made in acids which give incomplete protonation. The factor which gives k_{1} from $k_{\text {obs }}$. [see equation (3)] can then

Table 5
Kinetics for compound (3) in aqueous sulphuric acid at $25^{\circ} \mathrm{C}$; u.v. at 260 nm

Acid. wt. $\%$	$-H_{\mathbf{A}}$	$-H_{0}$	$-\log k_{1} / \mathrm{s}^{-1 a}$
$75 \cdot 2$	$4 \cdot 17$	$6 \cdot 60$	$6 \cdot 30$
$76 \cdot 9$	$4 \cdot 31$	$6 \cdot 86$	$6 \cdot 16$
$81 \cdot 4$	$4 \cdot 67$	$7 \cdot 57$	$5 \cdot 95$
$82 \cdot 6$	4.79	$7 \cdot 76$	$5 \cdot 81$
$84 \cdot 8$	4.99	8.10	$5 \cdot 71$

${ }^{a} \log k_{1}=\log k_{\text {obs. }} ;$ standard deviation $0.005-0.020$.
Table 6
Kinetics for compound (4) in aqueous sulphuric acid at $25^{\circ} \mathrm{C}$, or at $40^{\circ}(\dagger)$, or in perchloric acid $\left(^{*}\right)$ at $25^{\circ} \mathrm{C}$; u.v. at $245,250,260$, or 266 nm

Acid, wt. \%	$-H_{\Delta}$	$-H_{0}$	$-\underset{\mathrm{S}^{-1} a}{\log } k_{\text {obs. }} /$	$-\log _{\mathrm{s}^{-1 a}} k_{1} /$
$41 \cdot 1$	$2 \cdot 03$	$2 \cdot 49$	4.55	$3 \cdot 93$
$47 \cdot 1$	$2 \cdot 34$	$3 \cdot 06$	$4 \cdot 14$	$3 \cdot 77$
$49 \cdot 9$	$2 \cdot 49$	$3 \cdot 36$	$3 \cdot 99$	$3 \cdot 71$
$55 \cdot 0$	2.78	$3 \cdot 91$	$3 \cdot 64$	$3 \cdot 48$
$59 \cdot 1$	$3 \cdot 02$	$4 \cdot 37$	$3 \cdot 51$	$3 \cdot 44$
$62 \cdot 8$	$3 \cdot 26$	$4 \cdot 81$	$3 \cdot 32$	b
$65 \cdot 0$	$3 \cdot 41$	$5 \cdot 08$	$3 \cdot 23$	b
$70 \cdot 1$	$3 \cdot 75$	$5 \cdot 81$	$3 \cdot 06$	b
$70 \cdot 5$	$3 \cdot 78$	$5 \cdot 87$	$3 \cdot 04$	b
$73 \cdot 3$	$4 \cdot 01$	6.31	2.95	b
$76 \cdot 9$	$4 \cdot 31$	$6 \cdot 86$	2.85	b
$81 \cdot 6$	4.71	$7 \cdot 60$	$2 \cdot 58$	b
$51 \cdot 7 \dagger$		$3 \cdot 32$	$3 \cdot 055$	
$58.9 \dagger$		4.07	$2 \cdot 68$	
$63 \cdot 9 \dagger$		$4 \cdot 64$	$2 \cdot 48$	
42.0 *	2•14	$2 \cdot 57$	4.03	
47-9*	$2 \cdot 54$	$3 \cdot 20$	$3 \cdot 58$	
${ }^{\text {a }}$ Stan	devia	$0 \cdot 006$	014. ${ }^{6}$ As	g $k_{\text {obs }}$.

Table 7
Kinetics for compound (5) in aqueous sulphuric acid at $25^{\circ} \mathrm{C}$, or at $40^{\circ}(\dagger)$, or in perchloric acid $\left({ }^{*}\right)$ at $25^{\circ} \mathrm{C}$; u.v. at 250 nm

Acid, wt. \%	$-H_{\text {A }}$	$-H_{0}$	$-\log _{\mathrm{s}^{-1}} k_{\mathrm{obs}} / /$	$-\log _{\mathrm{S}^{-1 b}} k_{1} /$
$35 \cdot 0$	1.74	$2 \cdot 06$	$5 \cdot 15$	$3 \cdot 07$
$42 \cdot 1$	$2 \cdot 09$	$2 \cdot 57$	$4 \cdot 45$	$2 \cdot 89$
$45 \cdot 2$	$2 \cdot 23$	$2 \cdot 86$	$4 \cdot 16$	$2 \cdot 93$
$48 \cdot 3$	$2 \cdot 39$	3•19	$3 \cdot 84$	$2 \cdot 81$
$51 \cdot 2$	$2 \cdot 55$	$3 \cdot 50$	$3 \cdot 58$	$2 \cdot 87$
$53 \cdot 9$	$2 \cdot 72$	$3 \cdot 80$	$3 \cdot 33$	$2 \cdot 82$
57-0	$2 \cdot 90$	$4 \cdot 13$	$3 \cdot 09$	$2 \cdot 73$
$53 \cdot 1$	$2 \cdot 96$	$4 \cdot 24$	$3 \cdot 02$	$2 \cdot 77$
$61 \cdot 2$	3•16	$4 \cdot 61$	$2 \cdot 84$	$2 \cdot 68$
$63 \cdot 5$	$3 \cdot 31$	$4 \cdot 89$	$2 \cdot 71$	$2 \cdot 66$
$67 \cdot 3$	$3 \cdot 55$	$5 \cdot 40$	$2 \cdot 54$	$2 \cdot 52$
$69 \cdot 2$	$3 \cdot 69$	$5 \cdot 68$	$2 \cdot 45$	$2 \cdot 44$
$72 \cdot 1$	3.91	$6 \cdot 10$	$2 \cdot 43$	$2 \cdot 42$
$73 \cdot 1$	$4 \cdot 00$	$6 \cdot 28$	$2 \cdot 41$	c
$78 \cdot 1$	$4 \cdot 43$	$7 \cdot 04$	$2 \cdot 30$	c
$56.7 \dagger$		$3 \cdot 81$	$2 \cdot 39$	
$61.3+$		$4 \cdot 32$	$2 \cdot 09$	
$46 \cdot 0$ *	$2 \cdot 40$	$2 \cdot 97$	$3 \cdot 60$	
$54 \cdot 8$ *	$3 \cdot 10$	4-22	$2 \cdot 56$	

${ }^{a}$ Standard deviation $0.003-0.010$. b Standard deviation $0.007-0.019$. © As $\log k_{\text {obs }}$.
incorporate errors consequent on small errors in the measured values of $\left[\mathrm{BH}^{+}\right] /[\mathrm{B}]$. It could then be suggested that the linearity expressed by equations (6) and
(7) may be more apparent than real over the range of acidity which gives low degrees of protonation. However, all the kinetic measurements on compounds (1)-(3) refer to essentially completely protonated species, and for (4) the few measurements which are not on the cation have a $k_{1} / k_{\text {obs. }}$ factor less than 4 , which can be determined with good accuracy. The linearity in every case is good (see Table 8). The conclusions

Table 8
Kinetic relationships for rearrangements in aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $25^{\circ} \mathrm{C}$

Compd.	$-a^{a}$	$-\mathrm{b}{ }^{\text {a }}$	$-\mathrm{c}^{\text {b }}$	- ${ }^{\text {d }}$	$-\phi^{c}$	$-\log _{\mathrm{s}^{-1}} k_{\mathbf{1}} \mathbf{0} ;$
(1)	$0 \cdot 22$	$6 \cdot 63 \pm 0 \cdot 12$	$0 \cdot 12$	6.51 ± 0.12	$0 \cdot 12$ (5)	$6 \cdot 39$
(2)	$0 \cdot 48$	7.39 ± 0.12	$0 \cdot 25$	7.06 ± 0.12	$0 \cdot 27$ (5)	6.91
(3)	0.68	9.12 ± 0.23	$0 \cdot 37$	8.73 ± 0.20	0.39	$8 \cdot 42$
(4)	$0 \cdot 48$	4.87 ± 0.05	$0 \cdot 25$	4.53 ± 0.05	$0 \cdot 27$	$4 \cdot 36$
(5)	$0 \cdot 29$	3.57 ± 0.06	$0 \cdot 15$	3.35 ± 0.06	$0 \cdot 16$	$3 \cdot 25$
	in on n CO	quation (6). $; \log k_{1}{ }^{0}$ ficients 0.9	$\begin{gathered} b \mathrm{Va} \\ \text { cors } \\ -0 . \end{gathered}$	lues in equa as in quan 993.	tion (7). ities b a	c Values d d; all

drawn previously, ${ }^{6}$ which relate changes in the activity coefficient ratio $f_{\ddagger}: f_{\mathrm{BH}^{+}}$to changing acidity, should also apply to compounds (1)-(5).

Qualitative Discussion of the Kinetics in Aqueous Sulphuric Acid.-The bicyclic compounds (1) and (2) and the steroid (3) are assumed to undergo methyl migration as shown in Scheme 1, by a direct 1,2-cationic shift (path a) through the transition state (A); the rearrangements of the monocyclic dienones (4)-(6) are similar. The alternative path, leading from (1) and (2) to products (8) and (10) has been shown to follow path b, via a spiran intermediate (B); this is referred to as the ' spiran migration' path. For evidence on the existence of these paths, see refs. 1-4. For the reasons given earlier, the relative rates of rearrangement of a pair of dienones depend both on the proportions in the reactive cationic forms (11) [given by equations (4) and (5)], and on the cations' propensities for rearrangement. A measure of former factor is available from the basicity data; we will discuss the latter factor, given by k_{1}. Comparisons of k_{1} data for various dienones depend to some extent on the acidity at which the comparison is made, because the change of k_{1} with acidity [a and c in equations (6) and (7)] is not the same for all (see Table 8). The plots of $\log k_{1}$ vs. H_{Δ} or H_{0} for compounds (2)-(6) are roughly parallel over the acidities studied, but compound (1) has a different gradient. At the ' standard ' acidity taken before, ${ }^{6} H_{0}-5 \cdot 80$ in sulphuric acid, the total values of k_{1} are $(1.53 \pm 0.17) 10^{-6},(2.47 \pm$ $0 \cdot 17) 10^{-6}, \quad(2.7 \pm 1 \cdot 0) 10^{-7}, \quad(8.6 \pm 0 \cdot 25) 10^{-4}, \quad(3.4 \pm$

[^3]$0 \cdot 1) 10^{-3}$, and $(2 \cdot 88 \pm 0 \cdot 17) 10^{-4} \mathrm{~s}^{-1}$ for compounds (1)-(6), respectively.* Dissected values of k_{1} at the same acidity, assuming the product ratios measured at other acidities still apply are: in (1), methyl migration (1.20 ± 0.13) $\left.10^{-6}\right]$, spiran migration ($3 \cdot 3 \pm 0.4$) 10^{-7} s^{-1}; in (2), methyl migration ($1 \cdot 45 \pm 0 \cdot 2$) 10^{-6}, spiran

migration (1.02 ± 0.15) $10^{-6} \mathrm{~s}^{-1}$; in (3), methyl and spiran migration ca. $(1 \cdot 3 \pm 0.5) 10^{-7} \mathrm{~s}^{-1}$ each; in (4), migration of methyl to $\mathrm{C}-5(6 \cdot 0 \pm 0 \cdot 2) 10^{-4}$, and to $\mathrm{C}-3$ $(2.55 \pm 0.2) 10^{-4} \mathrm{~s}^{-1}$; in (5) for methyl migration to C-3 or C-5 (1.67 ± 0.05) $10^{-3} \mathrm{~s}^{-1}$ each; in (6), for methyl migration to $\mathrm{C}-3$ or $\mathrm{C}-5(1.44 \pm 0.09) 10^{-4} \mathrm{~s}^{-1}$ each.*

It is clear that the 2,4,4,6-tetramethyl dienone (5) rearranges ten or more times faster than the 4,4 -dimethyl dienone (6); in a later paper we will give arguments for believing this to be the result of electronic effects. Similarly, in the $2,4,4$-trimethyl dienone (4) migration to $\mathrm{C}-3$ is about twice as fast as migration in one direction in (6), and migration to $\mathrm{C}-5$ is faster by a further factor of about $2 \frac{1}{2}$. Previous reports on compound (4) state that its rearrangement in acetic anhydride-sulphuric acid is much more difficult than that of the 4,4 -dimethyl dienone ($6,{ }^{30}$ and that rearrangement under these conditions or by warming in dilute sulphuric acid ${ }^{31}$ gives $2,4,5$-trimethylphenol; the low m.p.s reported for the initially isolated products ${ }^{30,31}$ and our own results suggest appreciable

[^4]contamination by $2,3,4$-trimethylphenol. Other reports on 2-methylcyclohexa-2,5-dienones have been confusing. Hemetsberger ${ }^{32}$ found that rearrangement of the 2 -methyl dienone (12) in methanolic 80% sulphuric acid at low acidities had $k_{\text {obs. }}$. about 1.6 times greater than did that of (13) at the same acidities, and that only one product (14) was produced. Our own results agree roughly, in that compound (4) has $k_{\text {obs. }}$ about 3 times greater than does (6) at a given acidity, but suggest that some of the alternative product (15) should also be formed. Rearrangement of a 2 -methylsubstituted steroidal 1,4-dien-3-one was found to be faster than that of analogues which lack the 2-methyl

(12)

(13)

(14)

(15)
group, ${ }^{33}$ a result ascribed to the methyl group's basestrengthening effect. Our data show that this effect is at best small, although in the correct direction [compare (4), $\left(H_{\mathrm{A}}\right)_{\frac{1}{2}}-2.45 \pm 0.06$, with (6), $\left(H_{\mathrm{A}}\right)_{\frac{1}{2}}-2.38 \pm$ 0.03 ; and 2,4,4,5-tetramethylcyclohexa-2,5-dienone, ${ }^{5}$ $\left(H_{\Delta}\right)_{\frac{1}{2}}-1.86 \pm 0.04$, with the $3,4,4$-trimethyl dienone, ${ }^{5}$ $\left.\left(H_{\mathrm{A}}\right)_{\frac{3}{2}}-2.01 \pm 0.03\right]$; it would be important only if the dienones were incompletely converted into their cations under the conditions used. In the rearrangement of $5,6,7,8$-tetrahydro-3,4a-dimethylnaphthalen$2(4 \mathrm{a} H)$-one ${ }^{34}$ the poor yield (i.e. slow formation) of 3,4-dimethyl-2-tetralol, compared with that of (7) from (1), was attributed to the additional destabilising (buttressing) steric effects which would result from the proximity of the two methyl groups in the product. ${ }^{34}$ However, our earlier work ${ }^{6}$ showed that the analogously substituted 2,4,4,5-tetramethylcyclohexa-2,5-dienone rearranges to 2,3,4,5-tetramethylphenol slightly faster than the 3,4,4-trimethyl dienone rearranges to $3,4,5$-trimethylphenol. Our present results can be reconciled with the earlier ones 6,34 if it is accepted that a 2 -methyl group on the cyclohexa-2,5-dienone system inherently accelerates rearrangement (electronically), but that methyl migration to C-3 is slowed down by buttressing steric effects for dienones which have substituents at C-2, $-4,-4$, and -5 (or, presumably, at C-2, $-4,-5$, and -6).

[^5]It is noteworthy that methyl migration from C-4a to $\mathrm{C}-4$ in the bicyclic dienones (1) and (2), and from C-10 to $\mathrm{C}-1$ in the steroid (3) is much slower than that from C-4 to C-5 in 3,4,4-trimethylcyclohexa-2,5-dienone, or in the 3 -ethyl-4,4-dimethyl dienone: ${ }^{6}$ the rate reduction is to about $1 / 10$ th for (1) and (2), and to about $1 / 100$ th for (3). We suggest that the transition states (A), like the rearranged cations which lead to the products (7) and (9) (see Scheme 1) will be more strained than the dienone cations, and that the rearrangement will thus be slowed down: estimates of the size of this effect will be given in a later paper.

Studies in Perchloric Acid.-Limited studies were made of the rearrangement kinetics of compounds (1), (2), (4), and (5) in aqueous perchloric acid. This acid has an advantage over sulphuric acid in that it cannot sulphonate the phenolic rearrangement products and, unlike hydrochloric acid, should not cause ring opening of the saturated ring of the bicyclic dienone (2).* Values of H_{Δ} more negative than $-3 \cdot 3$ are not recorded for perchloric acid, so we compare the rates in perchloric acid with those in sulphuric acid of the same H_{0} value. In each case, reaction was faster in perchloric acid: for (1), methyl migration was accelerated by 4.5 ± 0.3 times, and spiran migration by 3.2 ± 0.4; for (2) the corresponding acceleration factors were 2.7 ± 0.5 and 4.3 ± 1.0. The reversal in behaviour of the two reaction paths for these two compounds does not, at present, permit discussion of the effects of the perchlorate or sulphate ion on the transition states, but the overall acceleration of both paths agrees with our previous findings for dienone-phenol rearrangements and the earlier discussion ${ }^{6}$ should apply here. For compound (4), the overall acceleration factor was $2.8 \pm 0 \cdot 2$, with migration to $\mathrm{C}-5$ affected slightly more than migration to $\mathrm{C}-3$; for (5) the acceleration factor was 2.9 ± 0.3. The kinetic measurements on (4) and (5) were performed at acidities which gave incomplete protonation; in each case the degree of protonation was close to that at the same H_{0} or H_{A} value in sulphuric acid, suggesting that their $\mathrm{p} K$ values are not significantly dependent on the acid. \dagger

Phenol-Phenol Rearrangement of 5,6,7,8-Tetrahydro-4,8-dimethyl-2-naphthol (9) into 5,6,7,8-Tetrahydro-4,8-dimethyl-1-naphthol (10).-The available evidence suggests that rearrangement of the bicyclic dienone (2) in aqueous sulphuric or perchloric acid gives a mixture of the phenolic products (9) and (10), and that (9) is itself isomerised to (10). The isomerisation is relatively slow at $25{ }^{\circ} \mathrm{C}$, but about 30% complete within 4 h at $100^{\circ} \mathrm{C}$; it probably explains the findings that rearrangement of (2) in sulphuric acid at $25^{\circ} \mathrm{C}$ gives an initial ratio of (9) to (10) of $59: 41$, but rearrangement for 30 min at 100° gives the ratio $31: 69$. Experiments

[^6]on the pure phenols suggest that (10) is not appreciably isomerised to (9), but overall loss of material under the acidic conditions employed may obscure the detection of a very slow reaction.
A phenol-phenol rearrangement of (7) to the isomeric 3 -methyl-1-tetralol was reported by Hopff and Dreiding, ${ }^{22}$ who also found 5,6,7,8-tetrahydro-1-naphthol and -2-naphthol to be interconverted in $70 \% \mathrm{HClO}_{4}$. The mechanism suggested is shown in Scheme 2, with $\mathrm{R}^{\prime}=\mathrm{H}$. The same sequence would not completely

explain the reaction $(9) \longrightarrow(10)$, which also requires a methyl migration step. One possible mechanism is that (9) is protonated and follows path a of Scheme 1 in the reverse direction, giving the original dienone cation, which then reacts via path b to give (10). An alternative route could follow Scheme 2 (with $\mathrm{R}=$ $\mathrm{R}^{\prime}=\mathrm{Me}$), giving (16) which may then isomerise to (10). We have no strong evidence favouring one route over the other, but are loath to accept the first suggestion, which should lead to a drift from first-order kinetics as the reaction proceeds: this was not observed.

We are investigating the occurrence of similar rearrangements which may give further information.

[^7]Activation Parameters.-Approximate values of the Arrhenius activation energies for the rearrangements of the bicyclic dienone (2) and the two monocyclic compounds (4) and (5) were obtained from kinetics in sulphuric acids of equal H_{0} values at 25 and $40{ }^{\circ} \mathrm{C}$. In each case the Arrhenius E_{A} value * was between $25 \cdot 4 \pm 0 \cdot 6$ and $28 \pm 1 \mathrm{kcal} \mathrm{mol}^{-1}(106 \pm 3$ and 117 ± 4 $\mathrm{kJ} \mathrm{mol}^{-1}$). This may be compared with the isomerisation of hexamethylcyclohexa-2,4-dienone to hexamethyl-cyclohexa-2,5-dienone in 85 and 95% sulphuric acid, ${ }^{36}$ which should be more exothermic than our reactions, and has $\Delta G^{\ddagger} 24 \cdot 1 \mathrm{kcal} \mathrm{mol}^{-1}\left(100 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$; and the dienone-phenol rearrangement of 4,4-dimethylcyclo-hexa-2,5-dienone in $97 \cdot 24 \%$ sulphuric acid, which has ${ }^{37}$ $\Delta H^{\ddagger} 21 \cdot 9 \pm 0.4 \mathrm{kcal} \mathrm{mol}^{-1}\left(91 \pm 2 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$. The entropies of activation are all positive (ca. $10 \mathrm{cal} \mathrm{mol}^{-1}$ $\mathrm{deg}^{-1} ; 42 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$), which may be due to the 'shedding' of water of solvation which has been shown to occur during the rearrangements. ${ }^{6,37}$

APPENDIX

The $\mathrm{p} K$ values of the dienones studied here [apart from (5)], the alkylated analogues reported earlier, ${ }^{5}$ and some other analogues, ${ }^{26,38}$ (12 compounds; $\mathrm{p} K$ range 2.6 units) are correlated ($r=0.98$) by a HammettBrown equation [equation (9)], using $\sigma_{m}{ }^{+}$for 2- and

$$
\begin{equation*}
-\mathrm{p} K=2 \cdot 66 \pm 0 \cdot 12+2 \cdot 32 \Sigma \sigma^{+} \tag{9}
\end{equation*}
$$

6 -substituents and σ_{o}^{+}for 3 - and 5 -substituents. Values of $\sigma_{o}{ }^{+}$are available in ref. 39. This equation should

(17)

(18) $R=M e$
(21) $R=H$

(19) $R=M e$
(20) $\mathrm{R}=\mathrm{H}$

(23)

(22)
apply equally to 4-methyl-, -ethyl-, or -n-propyl-cyclo-hexa-2,5-dienones, which we have shown to have equal $\mathrm{p} K$ values. ${ }^{26,38}$ The measured $\mathrm{p} K$ of dienones which have one large group at C-2 or C-6 should be 0.3 unit lower than predicted by equation (9) because of a

[^8] and R. Taylor, Tetrahedron Letters, 1973, 13.
statistical factor explained later. We attribute the low basicity of (5) to steric inhibition of protonation of the carbonyl group by the combined effect of the 2 - and 6-methyl groups. The steric interaction shown in (17) and (18), relative to that in (19), is estimated using the cation of 2 -methylphenol as a model. This was shown by n.m.r. to have structure (20), with none of (21) being observed. ${ }^{40}$ A similar effect is seen in the cation of methyl acetate in $\mathrm{HF}-\mathrm{BF}_{3}$, which was shown ${ }^{41}$ to be solely (22), and not (23). If the detection limit were 4% the energy difference between the cation conformers would be $>1.6 \mathrm{kcal} \mathrm{mol}{ }^{-1}\left(6.7 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$. Equation (10) for an equilibrium is equivalent to equation (11) at $25{ }^{\circ} \mathrm{C}$, and the unavoidable methyl-hydrogen interaction shown in (17) will cause the basicity of
dienone (5) to be reduced by at least 1.2 pK unit. Dienones which have only one 2 - or 6 -substituent of significant size will lack the cation conformation of type (18) and should be made less basic by $\log _{10} 2$, i.e. 0.3 pK unit thereby.
\[

$$
\begin{equation*}
\Delta \Delta G=-R T \Delta(\ln K) \tag{10}
\end{equation*}
$$

\]

$\Delta \Delta G_{\text {protonation }}=-1 \cdot 36 \Delta \mathrm{p} K$, in $\mathrm{kcal} \mathrm{mol}^{-1}=$ $-5.69 \Delta \mathrm{p} K$, in $\mathrm{kJ} \mathrm{mol}^{-1}$

We thank the S.R.C. for a studentship to M. J. H.
[3/588 Received, 20th March, 1973]
${ }^{40}$ G. A. Olah and Y. K. Mo, J. Org. Chem., 1973, 38, 353.
${ }^{41}$ H. Hogeveen, Rec. Trav. chim., 1967, 86, 816.

[^0]: * The dienone is very volatile, and is easily swept out of the preparation by a stream of nitrogen; serious losses in yield can result. Use of selenium dioxide in t-butyl alcohol with pyridine as catalyst gave up to 30% conversion into dienone, but the yield of isolated product was poor.
 \dagger In ref. 22 this ratio is given as $20: 80$; in ref. 23 it is given as 16:84.
 \ddagger Ref. 23 used $20 \cdot 6 \mathrm{~N}$-sulphuric acid ($65 \cdot 1 \%$) at $51{ }^{\circ} \mathrm{C}$ for 2 days, giving a ratio of $86: 14$.

 16 (a) M. A. Paul and F. A. Long, Chem. Rev., 1957, 57, 1 ; (b) M. J. Jorgenson and D. R. Hartter, J. Amer. Chem. Soc., 1963, 85, 878.

[^1]: ${ }^{17}$ (a) K. Yates, J. B. Stevens, and A. R. Katritzky, Canad. J. Chem., 1964, 42, 1957; (b) C. D. Johnson, A. K. Katritzky, and N. Shakir, J. Chem. Soc. (B), 1967, 1235.
 ${ }^{18}$ C. D. Johnson, A. R. Katritzky, and S. A. Shapiro, J. Amer. Chem. Soc., 1969, 91, 6654.
 ${ }^{19}$ K. Yates and H. Wai, J. Amer. Chem. Soc., 1964, 86, 5408.
 ${ }^{20}$ E. A. Guggenheim, Phil. Mag., 1926, 2, 538.
 ${ }_{22}^{21}$ E. S. Swinbourne, J. Chem. Soc., 1960, 2371.
 ${ }^{22}$ W. H. Hopff and A. S. Dreiding, Angere. Chem. Internat. Edn., 1965, 4, 690.
 ${ }^{23}$ H. J. Shine and C. E. Schoening, J. Org. Chem., 1972, 37, 2899.
 ${ }^{24}$ A. S. Dreiding, W. J. Pummer, and A. J. Tomasewski, J. Amer. Chem. Soc., 1953, 75, 3159; A. S. Dreiding and W. J. Pummer, ibid., p. 3162.

[^2]: ${ }^{25}$ P. J. Kropp, J. Amer. Chem. Soc., 1963, 85, 3280.
 ${ }^{26}$ J. W. Pilkington and A. J. Waring, Tetrahedron Letters, 1973, 4345.

[^3]: * The values quoted are for rearrangements of the cations, all in the same medium. However there is no reason to suppose that all the cations will be similarly solvated. To overcome this difficulty one may compare the values of k_{1} extrapolated to infinite dilution in water [given by $k_{1}{ }^{0}$ in the Bunnett and Olsen ${ }^{29}$ equation (8)] which are tabulated in Table 8. The order of reactivities of the various compounds changes little, and the same qualitative conclusions apply.

[^4]: 29 J. F. Bunnett and F. P. Olsen, Canad. J. Chem., 1966, 44, 1917.
 ${ }^{30}$ M. Yanagita and S. Inayama, J. Org. Chem., 1954, 19, 1724; M. Yanagita, Pharmazie, 1955, 10, 524.
 ${ }^{31}$ M. Yanagita, S. Inayama, M. Hirakura, and F. Seki, J. Org. Chem., 1958, 23, 690.

[^5]: * These three acids are considered because their acidity function behaviours have been most studied. Kropp ${ }^{25}$ showed that ring opening of (2) occurs to the extent of about 16% within 45 \min at 100° in concentrated hydrochloric acid, so we did not use this acid in kinetic studies.
 \dagger Note added in proof: Values of H_{A} for perchloric acid solutions at $25{ }^{\circ} \mathrm{C}$ have now been published, ${ }^{35}$ and are quoted in Tables 3, 4, 6, and 7. Equal H_{A} values are not, in general, found for solutions of sulphuric and perchloric acid which have the same H_{0} value. Comparison of rates in acids of equal H_{A} values shows the rearrangement in perchloric acid to be faster than that in sulphuric acid by the following factors: for (1), 4.7 ± 0.5; for (2), 4.2 ± 0.7; for (4), 2.3 ± 0.2; and for (5), 1.9 ± 0.2. For (1) and (2) the factor seems to increase with increasing acid strength.

[^6]: ${ }^{32}$ M. Hemetsberger, Monatsh., 1968, 99, 1225, 1724.
 ${ }^{33}$ D. N. Kirk and V. Petrow, J. Chem. Soc., 1959, 788.
 ${ }^{34}$ P. J. Kropp, Tetrahedron Letters, 1963, 1671.
 ${ }^{35}$ K. Yates, H. Wai, G. Welch, and R. A. McClelland, J. Amer. Chem. Soc., 1973, 95, 418.

[^7]: * Comparison of rates in acid of one concentration (wt. \%) for (2), which is completely protonated at the acidity employed, changes the higher value to $27 \pm 1 \mathrm{kcal} \mathrm{mol}^{-1}\left(113 \pm 4 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$.

[^8]: ${ }^{36}$ R. F. Childs, Chem. Comm., 1969, 946.
 ${ }_{37}$ V. P. Vitullo and N. Grossman, J. Amer. Chem. Soc., 1972.
 94, 3844.
 ${ }_{38} \mathrm{~J}$. W. Pilkington and A. J. Waring, unpublished work.
 ${ }^{39} \mathrm{C} . \mathrm{W}$. McGary, jun., Y. Okamoto, and H. C. Brown, J. Amer. Chem. Soc., 1955, 77, 3037; H. V. Ansell, J. LeGuen,

